Bismuth-containing chromates BixCrO1.5x+3 with a variable molar ratio of 1 ? n(Bi)/n(Cr) ? 38 were synthesized using
a ceramic method from Bi (III) and Cr (III) oxides. Depending on the n(Bi)/n(Cr) ratio, the calcined samples acquire a color from green to dark red. Ceramics turn red when subjected to high-temperature treatment in air (at 650 ?С) of a mixture
of oxides with a significant predominance of bismuth oxide n(Bi2O3)/n(Cr2O3) ? 3. It is noteworthy that calcination
of chromium (III) oxide under similar conditions does not lead to the oxidation of chromium ions. X-ray phase analysis confirmed the formation of chromates Bi6Cr2O15, Bi10Cr2O21, Bi31Сr5O61.5, Bi14CrO24. Studies of samples using X-ray
spectroscopy showed that the NEXAFS Cr2p spectra of red bismuth-chromium ceramics coincide in the main details
of the spectrum with the K2CrO4 spectrum and indicate the chromium content in the oxide ceramics in the form
of tetrahedral CrO42– ions. According to scanning microscopy data, the samples are characterized by a dense, low-porosity microstructure.
Angelina M. Minyukhina – bachelor of Chemistry Department, Syktyvkar State University, Syktyvkar, Russia
Anastasiya K. Busova – bachelor of Chemistry Department, Syktyvkar State University, Syktyvkar, Russia
Roman I. Korolev – senior lecturer of Department of Radiophysics and Electronics, Syktyvkar State University, Syktyvkar, Russia
Boris A. Makeev – Candidate of Geological-Mineralogical Sciences, researcher at the Laboratory of Mineralogy, Institute of Geology FRC Komi SC UB RAS, Syktyvkar, Russia
Roman N. Skandakov – postgraduate student, research engineer Laboratory of Experimental Physics, Institute of Physics and Mathematics Komi Science Center RAS, Syktyvkar, Russia
Sergey V. Nekipelov – Candidate of Physical and Mathematical Sciences, Head Laboratory of Experimental Physics, Institute of Physics and Mathematics of Komi SC UB RAS, Syktyvkar, Russia
Nadezhda A. Zhuk – Candidate of Chemical Sciences, Associate Professor, senior researcher of Laboratory of Ceramic Materials Science, Syktyvkar State University, Syktyvkar, Russia
1. Shuk P., Wiemhofer H. D., Guth U., Gopel M. Oxide ion conducting solid electrolytes based on Bi2O3 // Sol. St. Ion. 1996. No. 89. P. 179 – 196.
2. Zhuk N. A., Sekushin N. А., Krzhizhanovskaya M. G., Kharton V. V. Multiple relaxation, reversible electrical breakdown and bipolar conductivity of pyrochlore–type Bi2Cu0,5Zn0,5Ta2O9 ceramics // Sol. St. Ion. 2022. No. 377. P. 115868.
3. Subbarao E. C. A family of ferroelectric bismuth compounds // J. Physics and Chemistry of Solids. 1962. No. 23. P. 665 – 676.
4. Cava R. J., Batlogg B., Krajewski J. J., et al. Superconductivity near 30 K without copper: The Ba0,6K0,4BiO3 perovskite // Nature. 1988. No. 332. P. 814 – 816.
5. Janani B., Syed A., Al-Shwaiman H. A., et al. Performance analysis of novel Bi6Cr2O15 coupled Co3O4 nano-heterostructure constructed by ultrasonic assisted method: Visible-light driven photocatalyst and antibacterial agent // Colloids Surf., A. 2021. No. 622. P. 126671.
6. Li Z., Zhang Z., Wang L., Meng X. Bismuth chromate (Bi2CrO6): A promising semiconductor in photocatalysis // J. Catal. 2020. No. 382. P. 40 – 48.
7. Grins J., Esmaeilzadeh S., Hull S. Structure and ionic conductivity of Bi6Cr2O15, a new structure type containing (Bi12O14)8n+n columns and CrO2?4 tetrahedra // J. Sol. St. Chem. 2002. No. 163. P. 144 – 150.
8. Colmont M., Drache M., Roussel P. Synthesis and characterization of Bi31Cr5O61.5, a new bismuth chromium oxide, potential mixed-ionic–electronic conductor for solid oxide fuel cells // J. Power Sources. 2010. No. 195. P. 7207 – 7212.
9. Warda S. A., Pietzuch W., Massa W., et al. Color and constitution of CrVI-doped Bi2O3 phases: the structure of Bi14CrO24 // J. Sol. St. Chem. 2000. No. 149. P. 209 – 217.
10. Liu Y. H., Li J. B., Liang J. K., et al. Phase diagram of the Bi2O3–Cr2O3 system // Mater. Chem. Phys. 2008. No. 112. P. 239 – 243.
11. K. Masuno. Crystal chemical studies on Bi2O3–Cr2O3 system // Nippon Kagaku Zassi. 1969. No. 90. P. 1122 – 1127.
12. Esmaeilzadeh S., Lundgren S., H?lenius U., Grins J. Bi1?xCrxO1.5+1.5x, 0.05 ? x ? 0.15: a new high-temperature solid solution with a three-dimensional incommensurate modulation // J. Sol. St. Chem. 2001. No. 156. P. 168 – 180.
13. Meera A. V., Basu J., Ganesan R., Gnanasekaran T. Studies on the phase diagram of Bi–Cr–O system // J. Nucl. Mater. 2017. No. 487. P. 174 – 185.
14. Zhitomirskii D., Fedotov S. V., Skorokodv N. E., et al. Synthesis and properties of phases in the Bi2O3–Cr2O3 system // Russ. J. Inorg. Chem. 1983. No. 28. P. 570 – 573.
15. Saleh F., Parkerton T. F., Lewis R. V., et al. Kinetics of chromium transformations in the environment // Sci. Total Environ. 1989. No. 86. P. 25 – 41.
16. Bartlett R. J., James B. Behavior of chromium in soils. Part III: oxidation // J. Environ. Qual. 1979. No. 8. P. 31 – 35.
17. Eary L. E., Rai D. Kinetics of Cr (III) oxidation by manganese dioxide // Environ. Sci. Technol. 1987. No. 21. P. 1187 – 1193.
18. Schroeder D. C., Lee G. F. Potential transformations of chromium in natural waters // Water Air Soil Pollut. 1975. No. 4. P. 355 – 365.
19. Fendorf S. E., Zasoski R. J. Chromium (III) oxidation by MnO2. Part I: characterization, Environ // Sci. Technol. 1992. No. 26. P. 79 – 85.
20. Apte A. D., Tare V., Bose P. Extent of oxidation of Cr (III) to Cr (VI) under various conditions pertaining to natural environment // J. of Hazardous Materials. 2006. No. 128. P. 164 – 174.
21. Jeong S.-Y., Lee J.-B., Na H., Seong T.-Y. Epitaxial growth of Cr2O3 thin film on Al2O3 (0001) substrate by radio frequency magnetron sputtering combined with rapid-thermal annealing // Thin Solid Films. 2010. No. 518. P. 4813 – 4816.
22. Bullen H. A., Garrett S. J. CrO2 by XPS: comparison of CrO2 powder to CrO2 films on TiO2(110) single crystal surfaces // Surf. Sci. Spectra. 2001. No. 8. P. 225 – 233.
23. Theil C., Van Elp J., Folkmann F. Ligand field parameters obtained from and chemical shifts observed at the Cr L2,3 edges // Physical Review B. 1999. No. 59(12). P. 7931 – 7936.
24. Ito Y., Tochio T., Vlaicu A. M., et al. The contribution of the ligands around Cr to the resonant inelastic L X-ray emission spectra // J. Electron Spectroscopy and Related Phenomena. 1999. No. 101 – 103. P. 851 – 858.
25. Лоу В. Парамагнитный резонанс в твердых телах. Москва: Наука, 1962. 242 с.
26. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. А. 1976. No. 32. P. 751 – 767.
The article can be purchased
electronic!
PDF format
500
DOI: 10.14489/glc.2024.07.pp.010-017
Article type:
Research Article
Make a request