For the first time, optical ceramics based on LuAG were obtained, simultaneously doped with Yb3+ and Er3+ ions. The optical, spectral-luminescent and kinetic characteristics of ceramics Y2,82Yb0,15Er0,03Al5O12 (YAG 5-Yb, 1-Er) and Lu2,82Yb0,15Er0,03Al5O12 (LuAG 5-Yb, 1-Er) have been studied. It is shown that when luminescence is excited
at a wavelength of 940 nm in YAG 5-Yb, 1-Er and LuAG 5-Yb, 1-Er ceramics, the energy of exciting radiation
is efficiently transferred from Yb3+ ions to Er3+ ions.
The energy transitions that play a major role in the processes of Stokes and anti-Stokes luminescence of ceramics
YAG 5-Yb, 1-Er and LuAG 5-Yb are determined, and a diagram of these transitions is shown. A mutual change in
the intensity of anti-Stokes luminescent bands caused by the transitions 2H11/2 ? 4I15/2 (525 nm) and 4S3/2 ? 4I15/2 (546 nm) depending on the power of the exciting radiation was found. The possibility of using YAG 5-Yb, 1-Er and LuAG 5-Yb,
1-Er ceramics as a material for optical thermometry is demonstrated.
Dmitry S. Vakalov – Candidate of Physical and Mathematical Sciences, Head of the Sector of Physical and Chemical Methods of Research and Analysis of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia
Irina S. Chikulina – senior researcher at the Department of Science, North-Caucasus Federal University (NCFU), Stavropol, Russia
Stanislav N. Kichuk – leading engineer of the Research Laboratory of Ceramics and Technochemistry of the Scientific Laboratory Complex of Clean Zones, Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia
Dmitry P. Bedrakov – engineer of the Scientific Laboratory Complex of Clean Zones, Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia
Inna V. Kichuk – 2nd year graduate student of the Department of Experimental Physics, Faculty of Physics and Technology, North-Caucasus Federal University (NCFU), Stavropol, Russia
1. Lukin E. S., Makarov N. A., Kozlov A. I., et al. Oxide ceramics of the new generation and areas of application // Glass Ceram. 2008. V. 65, No. 9–10. P. 348 – 352.
2. Bakunov V. S., Lukin E. S. Special characteristics of the technology of high-density technical ceramics. Chemical methods for obtaining the initial powders // Glass Ceram. 2008. V. 65, No. 1–2. P. 33 – 37.
3. Nikova M. S., Tarala V. A., Malyavin F. F., et al. Sintering and microstructure evolution of Er1.5Y1.5-xScx+yAl5-yO12 garnet ceramics with scandium in dodecahedral and octahedral sites // J. Eur. Ceram. Soc. 2022. V. 42, No. 5. P. 2464 – 2477.
4. Nikova M. S., Tarala V. A., Kravtsov A. A., et al. Stable garnets in the Er2O3–Sc2O3–Al2O3 oxide system for optical ceramics application // Ceram. Int. 2022. V. 48, No. 24. P. 36739 – 36747.
5. Zhu H., Tang D., Duan Y., et al. Laser operation of diode-pumped Er,Yb co-doped YAG ceramics at 1.6 ?m. // Opt. Express. 2013. V. 21, No. 22. P. 26955 – 26961.
6. Fei B., Chen W., Guo W., et al. Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics // J. Alloys Compd. 2015. V. 636. P. 171 – 175.
7. Vorona I. O. Yavetskiy R. P., Dobrotvorskaya M. V., et al. 1532 nm sensitized luminescence and up-conversion in Yb,Er:YAG transparent ceramics // Opt. Mater. (Amst). 2018. V. 77. P. 221 – 225.
8. Yang H., Zhang J., Luo D., et al. Novel transparent ceramics for solid-state lasers // High Power Laser Sci. Eng. 2013. V. 1, No. 3–4. P. 138 – 147.
9. Chen X., Wu Y., Wei N., et al. Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route // J. Lumin. 2017. V. 188. P. 533 – 540.
10. Hosta?a J., Ne?ina V., Uhl??ov? T., Biasini V. Effect of rare earth ions doping on the thermal properties of YAG transparent ceramics // J. Eur. Ceram. Soc. 2019. V. 39, No. 1. P. 53 – 58.
11. Zhou J., Zhang W., Huang T., et al. Optical properties of Er,Yb co-doped YAG transparent ceramics // Ceram. Int. 2011. V. 37, No. 2. P. 513 – 519.
12. Min L., Shiwei W., Jian Z., et al. Preparation and upconversion luminescence of Y3Al5O12?: Yb3+, Er3+ transparent ceramics // J. Rare Earths. 2006. V. 24, No. 6. P. 732 – 735.
13. Beil K., Fredrich-Thornton S. T., Tellkamp F., et al. Thermal and laser properties of Yb:LuAG for kW thin disk lasers // Opt. Express. 2010. V. 18, No. 20. P. 20712.
14. Beil K., Fredrich-Thornton S. T., Peters R., et al. Yb - doped thin-disk laser materials: a comparison between Yb:LuAG and Yb:YAG // Advanced Solid-State Photonics. Washington, D.C.: OSA, 2009. P. WB28.
15. Liu J., Wu T., Li R., et al. A cost-effective way of sintering Ce3+:YAG based ceramic phosphors for high power/high brightness phosphor-converted solid state light sources // Phys. B Condens. Matter. 2022. V. 643. P. 414124.
16. Zhou M., Chen H., Zhang X., Tang B. Phase composition, microstructure, and microwave dielectric properties of non-stoichiometric yttrium aluminum garnet ceramics // J. Eur. Ceram. Soc. 2022. V. 42, No. 2. P. 472 – 477.
17. Tang F., Wang W., Yuan X., et al. Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics // J. Alloys Compd. 2014. V. 593. P. 123 – 127.
18. Babajanyan V. G., Kostanyan R. B., Muzhikyan P. H., Petrosyan A. G. Absorption and photoluminescence of YAG:Er3+, YAG:Ce3+, and YAG:Er3++Ce3+ crystals // J. Contemp. Phys. (Armenian Acad. Sci.) 2011. V. 46, No. 2. P. 54 – 57.
19. Sobczyk M. Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-dopedLa2O3–Na2O–ZnO–TeO2 glasses // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 119. P. 128 – 136.
20. Bao R., Yu L., Ye L., et al. Compact and sensitive Er3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on up-conversion luminescence // Sensors Actuators A Phys. 2018. V. 269. P. 182 – 187.
21. Manzani D., Petruci J. F. da S., Nigoghossian K., et al. A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass // Sci. Rep. 2017. V. 7, No. 1. P. 41596.
22. Drami?anin M. D., Anti? ?., ?ulubrk S., et al. Self-referenced luminescence thermometry with Sm3+ doped TiO2 nanoparticles // Nanotechnology. 2014. V. 25, No. 48. P. 485501.
23. Chang M., Song Y., Chen J., et al. Multisite luminescence and photocatalytic properties of TiO2:Sm3+ and TiO2:Sm3+ @ TiO2/TiO2:Sm3+ @SiO2 luminescent enhancement materials // J. Alloys Compd. 2017. V. 725. P. 724 – 738.
24. Singh A. K., Singh S. K., Gupta B. K., et al. Probing a highly efficient dual mode: down–upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors // Dalt. Trans. 2013. V. 42, No. 4. P. 1065 – 1072.
25. Shi L., Zhang H., Li C., Su Q. Eu3+ doped Sr2CeO4 phosphors for thermometry: single-color or two-color fluorescence based temperature characterization // RSC Adv. 2011. V. 1, No. 2. P. 298.
26. Miyata K., Konno Y., Nakanishi T., et al. Chameleon luminophore for sensing temperatures: control of metal?to?metal and energy back transfer in lanthanide coordination polymers // Angew. Chemie Int. Ed. 2013. V. 52, No. 25. P. 6413 – 6416.
The article can be purchased
electronic!
PDF format
500
DOI: 10.14489/glc.2024.07.pp.018-028
Article type:
Research Article
Make a request