The structure of matrix materials synthesized quenching sodium-rubidium aluminoborosilicate melts with the zirconium addition was studied using vibrational spectroscopy. The significant influence of zirconium on the ratio of the main structural units and the distribution of modifier cations was established in the glass structure. The results obtained were used to explain the change in the glass-melt transition temperature and the density of the material, and it is recommended for discussion in the selection of the composition and synthesis parameters of borosilicate matrix materials for the immobilization of high-level radioactive waste containing significant amounts of zirconium.
Viacheslav E. Eremyashev – leading researcher, Laboratory of Experimental Mineralogy and Physics of Minerals, South Urals Federal Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences (SU FRC MG UB RAS), Miass, Chelyabinskaya oblast, Russia
Galina G. Korinevskaya – junior research associate, Laboratory of Experimental Mineralogy and Physics of Minerals, South Urals Federal Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences (SU FRC MG UB RAS), Miass, Chelyabinskaya oblast, Russia
Dmitry E. Zhivulin – junior research associate, South Ural State University (National Research University) (SUSU), Chelyabinsk, Russia
Vladimir N. Bocharov – specialist of the Geomodel Resource Center, Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University”, St. Petersburg, Russia
1. McCloy J. S., Goel A. Glass-ceramics for nuclear-waste immobilization // MRS Bull. 2017. V. 42, No. 3. P. 233 – 240.
2. Ojovan M. I., Lee W. E., Kalmykov S. N. An introduction to nuclear waste immobilisation. 3rd ed. Amsterdam: Elsevier, 2019. 497 p.
3. Ojovan M. I., Steinmetz H. J. Approaches to disposal of nuclear waste // Energies. 2022. V. 15. P. 7804.
4. Kaspar T. C., Ryan J. V., Pantano C. G., et al. Physical and optical properties of the International simple glass // Npj Materials Degradation. 2019. V. 3, No. 1. P. 15.
5. Eremyashev V. E., Korinevskaya G. G., Rassomakhin M. A., et al. Solubility limiting of zirconium in aluminoborosilicate glasses // Radiochemistry. 2023. V. 65. P. S54 – S62.
6. Еремяшев В. Е., Кориневская Г. Г., Рассомахин М. А. и др. Растворимость циркония и рубидия в натриевых алюмоборосиликатных стеклах для иммобилизации радиоактивных отходов // Неорганические материалы. 2023. Т. 59, № 9. С. 1 – 8.
7. Ficheux M., Burov E., Aquilanti G., et al. Structural evolution of high zirconia aluminosilicate glasses // J. Non-Cryst. Solids 2020. V. 539. P. 120050.
8. Quintas A., Caurant D., Majerus O., et al. ZrO2 addition in soda-lime aluminoborosilicate glasses containing rare earths: Impact on the network structure // J. Alloys Compd. 2017. V. 714. P. 47 – 62.
9. Angeli F., Charpentier T., Ligny D., et al. Boron speciation in soda-lime borosilicate glasses containing zirconium // J. Am. Ceram. Soc. 2010. V. 93, No. 9. P. 2693 – 2704.
10. Connelly A. J., Hyatt N. C., Travis K. P., et al. The structural role of Zr within alkali borosilicate glasses for nuclear waste immobilization // J. Non Cryst. Solids. 2011. V. 357. P. 1647 – 1656.
11. Еремяшев В. Е., Осипов А. А., Осипова Л. М. Структура боросиликатных стекол при замещении катиона натрия катионами щелочноземельных металлов // Стекло и керамика. 2011. Т. 84, № 7. С. 3 – 6. [Eremyashev V. E., Osipov A. A., Osipova L. M. Borosilicate glass structure with rare-earth-metal cations substituted for sodium cations // Glass Ceram. 2011. V. 68. P. 205 – 208.]
12. Еремяшев В. Е., Кориневская Г. Г., Букалов С. С. Титан в структуре щелочных боросиликатных стекол // Стекло и керамика. 2015. Т. 88, № 11. С. 13 – 16. [Eremyashev V. E., Korinevskaya G. G., Bukalov S. S. Titanium in the structure of alkaline borosilicate glasses // Glass Ceram. 2016. V. 72. P. 405 – 408.]
13. Еремяшев В. Е., Жеребцов Д. А., Осипова Л. М., Бражников М. В. Влияние кальция, бария и стронция на термические свойства боросиликатных стекол // Стекло и керамика. 2017. Т. 90, № 10. С. 3 – 6. [Eremyashev V. E., Zherebtsov D. A., Osipova L. M. Effect of calcium, barium, and strontium on the thermal properties of borosilicate glasses // Glass Ceram. 2018. V. 74. P. 345 – 348.]
14. Eremyashev V. E., Zherebtsov D. A., Osipova L. M., et al. Thermal study of melting, transition and crystallization of rubidium and caesium borosilicate glasses // Ceram. Int. 2016. V. 42. P. 18368 – 18372. URL: https://doi.org/10.1016/j.ceramint.2016.08.169
15. Wan J., Cheng J., Lu P. The coordination state of B and Al of borosilicate glass by IR spectra // J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2008. V. 23. P. 419 – 421.
16. El-Egili K. Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses // Physica B. 2003. V. 325. P. 340 – 348.
17. Moncke D., Tricot G., Winterstein-Beckmann A., et al. On the connectivity of borate tetrahedral in borate and borosilicate glasses // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2015. V. 56, No. 5. P. 203 – 211.
18. Eremyashev V. E., Rassomakhin M. A., Korinevskaya G. G., et al. Synthesis and study of zirconium-containing sodium-cesium aluminoborosilicate matrix materials // Journal of Non-Crystalline Solids. 2023. V. 617. P. 122497.
19. McMillan P., Piriou B. Raman-spectroscopic studies of silicate and related glass structure – a review // Bull. Mineral. 1983. V. 106. P. 57 – 75.
20. Manara D., Grandjean A., Neuville D. R. Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study // American Mineralogist. 2009. V. 94, No. 5–6. P. 777 – 784.
21. Сбор, переработка, хранение и кондиционирование жидких радиоактивных отходов. Требования безопасности: НП-019–15. Введ. 2015-25-06. М.: Ростехнадзор России, 2015. 22 с.
The article can be purchased
electronic!
PDF format
500
DOI: 10.14489/glc.2024.08.pp.011-019
Article type:
Research Article
Make a request