It has been shown that the modified sol-gel method (method Pechini) successfully synthesizes multielement oxides based on bismuth niobate, crystallizing in the pyrochlore structure type (space group Fd-3m). The synthesis temperature of a single-phase sample is 950 ?С, which is one hundred degrees lower than the calcination temperature in the traditional ceramic synthesis method. The average crystallite size, determined by X-ray diffraction, varies from 39 (850 ?С) to 48 nm (1050 ?С) depending on the sintering temperature. According to X-ray phase analysis, the unit cell parameter is 10.4872(6) ?. The results of elemental mapping indicate a uniform distribution of metal atoms on the surface of the sample, and X-ray energy dispersive analysis showed that the chemical composition of the synthesized sample corresponded to the specified theoretical composition.
Ksenia A. Badanina – master, Chemistry Department, Syktyvkar State University, Syktyvkar, Russia
Roman I. Korolev – senior lecturer, Department of Radiophysics and Electronics, Syktyvkar State University, Syktyvkar, Russia
Boris A. Makeev – Candidate of Geological-Mineralogical Sciences, researcher at the Laboratory of Mineralogy, Institute of Geology FRC Komi SC UB RAS, Syktyvkar, Russia
Nadezhda A. Zhuk – Candidate of Chemical Sciences, Associate Professor, senior researcher of Laboratory of Ceramic Materials Science, Syktyvkar State University, Syktyvkar, Russia
1. Valant M., Babu G. S., Vrcon M., et al. Pyrochlore range from Bi2O3–Fe2O3–TeO3 system for LTCC and photocatalysis and the crystal structure of new Bi3(Fe0.56Te0.44)3O11 // J. Am. Ceram. Soc. 2011. V. 95. P. 644 – 650.
2. Giampaoli G., Siritanon T., Day B., et al. Temperature in-dependent low loss dielectrics based on quaternary pyrochlore oxides // Prog. Solid State Chem. 2018. V. 50. P. 16 – 23.
3. Subramanian M. A., Aravamudan G., Subba Rao G. V. Oxide pyrochlores – a review // Prog. Solid State Chem. 1983. V. 15. Р. 55 – 143.
4. Khaw C. C., Tan K. B., Lee C. K., West A. R. Phase equilibria and electrical properties of pyrochlore and zirconolite phases in the Bi2O3–ZnO–Ta2O5 system // J. Eur. Ceram. Soc. 2012. V. 32. Р. 671 – 680.
5. Lufaso M. W., Vanderah T. A., Pazos I. M., et al. Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5 // J. Sol. St. Chem. 2006. V. 179. Р. 3900 – 3910.
6. Valant M. Dielectric relaxations in Bi2O3–Nb2O5–NiO cubic pyrochlores // J. Am. Ceram. Soc. 2009. V. 92. P. 955 – 958.
7. Zhuk N. A., Sekushin N. A., Krzhizhanovskaya M. G., et al. Сr-doped bismuth tantalate pyrochlore: electrical and thermal properties, crystal structure and ESR, NEXAFS, XPS spectroscopy // Mater. Res. Bull. 2023. V. 158. P. 112067.
8. Zhuk N. A., Krzhizhanovskaya M. G., Koroleva A. V., et al. Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore // Sol. St. Sci. 2022. V. 125. P. 106820.
9. Zhuk N. A., Makeev B. A., Krzhizhanovskaya M. G., et al. Features of the phase formation of Cr/Mn/Fe/Co/Ni/Cu codoped bismuth niobate pyrochlore // Crystals. 2023. V. 13. P. 1202.
10. Zhuk N. A., Badanina K. A., Korolev R. I., et al. Phase formation of Co and Cr co-doped bismuth niobate with pyrochlore structure // Inorganics. 2023. V. 11. P. 288.
11. Солопан С. А., Белоус А. Г., Вьюнов О. И., Коваленко Л. Л. Синтез и свойства твердых растворов BaTi1-xSnxO3, полученных методом твердофазных реакций и золь-гель методом // Журнал неорганической химии. 2008. Т. 53, № 2. С. 197 – 203.
12. Медведев Д. А., Пикалова Е. Ю., Демин А. К. и др. Наноструктурированные композитные материалы на основе оксида церия и церата бария // Журнал физической химии. 2013. Т. 87, № 2. С. 275 – 283.
13. Ильина Е. А., Лялин Е. Д., Антонов Б. Д., Панкратов А. А. Литийпроводящие твердые электролиты в системе Li7La3Zr2O12–Li5La3Nb2O12, синтезированные золь-гель методом // Журнал прикладной химии. 2019. Т. 92, № 12. С. 1543 – 1549.
14. Akselrud L. G., Grun Yu. M., Zavalii P. Yu., et al. CSD universal program for single crystal and/or powder structure data treatment // Collected Abstracts of XII European Crystallographic Meeting. Moscow. 1989. V. 3. P. 155.
15. Roth R. S., Waring J. L. Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds // Am. Mineral. 1963. V. 48. P. 1348 ? 1356.
16. Piir I. V., Prikhodko D. A., Ignatchenko S. V., Schukariov A. V. Preparation and structural investigations of the mixed bismuth niobates, containing transition metals // Sol. St. Ion. 1997. V. 101 – 103. P. 1141 – 1146.
17. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. А. 1976. V. 32. P. 751 – 767.
18. Zhuk N. A., Krzhizhanovskaya M. G., Koroleva A. V., et al. Cr and Mg codoped bismuth tantalate pyrochlores: Thermal expansion and stability, crystal structure, electrical and optical properties, NEXAFS and XPS study // J. Sol. St. Chem. 2023. V. 323. P. 124074.
19. Zhuk N. A., Krzhizhanovskaya M. G., Koroleva A. V., et al. Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore // Sol. St. Sci. 2022. V. 125. P. 106820.
20. Zhuk N. A., Krzhizhanovskaya M. G., Sekushin N. A., et al. Crystal structure, dielectric and thermal properties of cobalt doped bismuth tantalate pyrochlore // J. Mater. Res. Technol. 2023. V. 22. P. 1791 – 1799.
The article can be purchased
electronic!
PDF format
500
DOI: 10.14489/glc.2024.08.pp.020-027
Article type:
Research Article
Make a request