Polyoxotungssilicates with the general formulas Cat4[SiW12O40] ? mH2O and Cat6[SiW11O39Ni(H2O)] ? nH2O, where Cat = Rb+, Cs+, (CH3)4N+, were synthesized. Using IR spectroscopy and X-ray phase analysis, it was shown that the compounds have the Keggin anion structure. When thermolysis of the resulting compounds in the temperature range 600…800 ?C, previously unknown phases are formed with the pyrochlore structure of the compositions Rb12/13Si2/13W22/13Ni2/13O6 and Cs12/13Si2/13W22/13Ni2/13O6 with unit cell parameters a = 10,284 and 10,309 ? and tungsten bronze Rb12/20Si3/20W36/20O6 and Si3/38W36/38O3. The synthesis of tungstosilicates with a pyrochlore and tungsten bronze structure by thermolysis of polyoxotungssilicates reduces their production temperature to 600…650 ?C and heating time to 1 hour, expands the range of chemical compositions and their morphological diversity.
Yaroslav A. Moroz – Candidate of Chemical Sciences, senior research, L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, Donetsk, Russia
Nikolai S. Lozinskii – Candidate of Chemical Sciences, senior research, L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, Donetsk, Russia
Alexander N. Lopanov – Doctor of Technical Sciences, Professor, Belgorod State Technological University named after V. G. Shukhov, Belgorod, Russia
Konstantin A. Chebyshev – Candidate of Chemical Sciences, Associate Professor of the Department of Physical and Inorganic Chemistry, North Caucasus Federal University, Stavropol, Russia
Mikhail Yu. Zelenskii – engineer, L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, Donetsk, Russia
Evgenia A. Fanina – Doctor of Technical Sciences, Professor, Belgorod State Technological University named after V. G. Shukhov, Belgorod, Russia
1. Murav’ev V. A., Makeev B. A., Krzhizhanovskaya M. G., et al. Synthesis of Bi2NiTa2O9 with pyrochlore structure // Glass and Ceramics. 2022. V. 79, No. 2. P. 70 – 74. DOI: 10.1007/s10717-022-00457-6
2. Парщукова К. Н., Рыльченко Е. П., Муравьев В. А. и др. Синтез мультикомпонентных соединений со структурой пирохлора // Стекло и керамика. 2022. Т. 95, № 10. С. 34 – 39. DOI: 10.14489/glc.2022.10.pp.034-039 [Parshchukova K. N., Rylchenko E. P., Muravyev V. A., et al. Synthesis of multicomponent compounds with pyrochlore structure // Glass Ceram. 2023. V. 79, No. 9–10. P. 418 – 421.]
3. Redozubov S. S., Nenasheva E. A., Gaidamaka I. M., et al. Low-temperature ceramic materials based on pyrochlore compounds in the Bi2O3–ZnO–Nb2O5 system // Inorganic Materials. 2020. V. 56, No. 1. P. 77 – 82. DOI: 10.1134/S0020168520010124
4. Zhuk N. A., Krzhizhanovskaya M. G., Koroleva A. V., et al. Cu, Mg codoped bismuth tantalate pyrochlores: crystal structure, XPS spectra, thermal expansion, and electrical properties // Inorganic Chemistry. 2022. V. 61, No. 10. P. 4270 – 4282. DOI: 10.1021/acs.inorgchem.1c03053
5. Бакланова Я. В., Денисова Т. А., Краснов А. Г. и др. Электрофизические свойства титанатов висмута со структурой типа пирохлора Bi1,6MxTi2O7–? (М–In, Li) // Электрохимия. 2017. Т. 53, № 8. С. 972 – 979. DOI: 10.7868/S0424857017080114
6. Ikeda S., Itani T., Nango K., et al. Overall water splitting on tungsten-based photocatalysts with defect pyrochlore structure // Catalysis Letters. 2004. V. 98, No. 4. P. 229 – 233. DOI: 10.1007/s10562-004-8685-y
7. Jitta R. R., Gundeboina R., Veldurthi N. K., et al. Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications a review // Journal of Chemical Technology and Biotechnology. 2015. V. 90, No. 11. P. 1937 – 1948. DOI: 10.1002/jctb.4745
8. Lopanov A. N., Lozinskyy N. S., Moroz Ya. A. Chemical processes accompanying the formation of modified ruthenium resistors and their functional properties // Russian Chemical Bulletin. 2020. V. 69, No. 9. P. 1719 – 1723. DOI: 10.1007/s11172-020-2955-8
9. Da Silva M. J., Rodrigues A. A., Lopes N. P. G. Cesium heteropolyacid salts: synthesis, characterization and activity of the solid and versatile heterogeneous catalysts // Chemistry. 2023. V. 5. P. 662 – 690. DOI: 10.3390/chemistry5010047
10. Pyrochlore oxide nanoparticles: electrical and dielectric properties. Farid M. A., editor. Lambert Academic Publishing, 2015. 80 p.
11. Солодовников С. Ф., Иванникова Н. В., Солодовникова З. А. и др. Синтез и рентгенографическое исследование поливольфраматов калия, рубидия и цезия с дефектными структурами пирохлора и гексагональной вольфрамовой бронзы // Неорган. материалы. 1998. Т. 34, № 8. С. 1011 – 1019.
12. Голубева Н. К., Данилович Д. П., Несмелов Д. Д. и др. Получение оксида ниобия (V) с контролируемой дисперсностью и морфологией // Стекло и керамика. 2022. Т. 95, № 1. С. 31 – 38. DOI: 10.14489/glc.2022.01.pp.031-038 [Golubeva N. K., Danilovich D. P., Nesmelov D. D., et al. Production of niobium (V) oxide with controlled dispersion and morphology // Glass Ceram. 2022. V. 79, No. 1–2. P. 22 – 27.]
13. Капышев А. Г., Стефанович С. Ю., Веневцев Ю. Н. и др. Выращивание и исследование монокристаллов антисегнетоэлектрика со структурой пирохлора Pb2Li1/2Nb3/2O6 // Кристаллография. 1976. Т. 21, № 4. С. 838 – 840.
14. Нестеров А. А., Коган В. А., Бородкин С. А. и др. Низкотемпературный синтез фаз BaTiO3 и PbTiO3 со структурой типа перовскита с использованием в качестве прекурсоров комплексных соединений бария и свинца // Современные проблемы науки и образования. 2013. № 4. С. 353 – 361.
15. Moroz Ya. A., Lozinskii N. S., Lopanov A. N., et al. Low-temperature synthesis of compounds with the pyrochlore and hexagonal tungsten bonze structure // Inorganic Materials. 2021. V. 57, No. 8. P. 835 – 842. DOI: 10.1134/S0020168521080069
16. Korenev V. S., Abramov P. A., Sokolov M. N. Azide coordination to polyoxometalates: synthesis of (Bu4N)4.3K0.7[PW11O39FeIIIN3] · 2.5H2O // Russian Journal of Inorganic Chemistry. 2022. V. 67, No. 11. P. 1763 – 1768. DOI: 10.1134/S0036023622600897
17. Mio? U. B., Dimitrijevi? R. ?., Davidovi? M., et al. Thermally induced phase transformations of 12-tungstophosphoric acid 29-hydrate: synthesis and characterization of PW8O26-type bronzes // Journal of Materials Science. 1994. V. 29. P. 3705 – 3718. DOI: 10.1007/BF00357338
18. Pereira da Silva K., Santos Coelho J., Maczka M., et al. Temperature-dependent Ramans cattering study on Cs4W11O35 and Rb4W11O35 systems // Journal of Solid State Chemistry. 2013. V. 199. P. 7 – 14. DOI: 10.1016/j.jssc.2012.09.021
The article can be purchased
electronic!
PDF format
500
DOI: 10.14489/glc.2024.08.pp.049-058
Article type:
Research Article
Make a request