Porous ?-Al2O3–3YSZ ceramics were fabricated using slip casting, incorporating 15 wt. % submicron Al2O3 powders as sintering additives. These orders were synthesized via solution combustion synthesis using glycine or urea as fuels. After firing at 1550 ?C, the ceramics exhibited a closed porosity range of 14.1…24.0 %. The experimental results revealed a linear correlation between density and closed porosity in the corundum Al2O3–3YSZ ceramics. The ceramic samples, fired at 1550 ?C, attained a relative density of 75…85 % with an open porosity of 0.90…1.71 %. The morphology of the aluminum oxide additives, synthesized through combustion reactions, was found to exert a significant influence on the strength characteristics of the ceramic materials.
Yuriy I. Komolikov – Candidate of Technical Sciences, art. scientific. Employee of the Laboratory of Chemistry of Rare Earth Element Compounds, Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (IHTT UrO RAS), Yekaterinburg, Russia
Larisa V. Yekmakova – Candidate of Chemical Sciences, senior researcher of the Laboratory of Chemistry of Rare Earth Element Compounds, Institiute of Solid State Chemistry Ural Branch of Russia Academy of Sciences, Ekaterinburg, Russia
Roman A. Shishkin – Candidate of Technical Sciences, senior researcher of the Laboratory of Chemistry of Rare Earth Element Compounds, Institiute of Solid State Chemistry Ural Branch of Russia Academy of Sciences, Ekaterinburg, Russia
Vladimir M. Skachkov – Candidate of Chemical Sciences, senior researcher of the Laboratory of Chemistry of Heterogeneous Processes, Institiute of Solid State Chemistry Ural Branch of Russia Academy of Sciences, Ekaterinburg, Russia
Victor D. Zhuravlev – Candidate of Chemical Sciences, Head. Laboratories of Chemicals and Compounds of Rare Earth Elements, Institiute of Solid State Chemistry Ural Branch of Russia Academy of Sciences, Ekaterinburg, Russia
1. Lukin E. S., Makarov N. A., Kozlov A. I., et al. Oxide ceramics of the new generation and areas of application // Glass and Ceramics (English translation of Steklo i Keramika). Springer, 2008. V. 65, No. 9–10. P. 348 – 352.
2. Abyzov A. M. Aluminium oxide and alumina ceramics (Review). Part 2. Foreign manufacturers. Technologies and research in the field of alumina ceramics // NOVYE OGNEUPORY (NEW REFRACTORIES). 2019. No. 2. P. 13 – 22.
3. Carter C. B., Norton M. G. Ceramic materials: Science and engineering // Ceramic Materials: Science and Engineering. New York: Springer, 2013. 716 с.
4. Casellas D., Nagl M., Llanes L., et al. Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects // J. Mater Process Technol. Elsevier, 2003. V. 143–144, No. 1. P. 148 – 152.
5. Wang J., Stevens R. Zirconia-toughened alumina (ZTA) ceramics // J. Mater Sci. Kluwer Academic Publishers, 1989. V. 24, No. 10. P. 3421 – 3440.
6. Rani D. A. et al. Effect of rare-earth dopants on mechanical properties of alumina // Journal of the American Ceramic Society. John Wiley & Sons, Ltd, 2004. V. 87, No. 2. P. 289 – 292.
7. ?mak I., D. ?ori?, V. Mandi?, L. ?urkovi?. Hardness and indentation fracture toughness of slip cast alumina and alumina-zirconia ceramics // Materials. Multidisciplinary Digital Publishing Institute, 2019. V. 13, No. 1. P. 122.
8. Kern F. Sintering conditions, microstructure and properties of alumina 10 vol% zirconia nanocomposites // Journal of Ceramic Science and Technology. 2011. V. 3, No. 1. P. 1 – 8.
9. Zhu T., Z. Xie, Y. Han, S. Li. Microstructure and mechanical properties of ZTA composites fabricated by oscillatory pressure sintering // Ceram Int. Elsevier, 2018. V. 44, No. 1. P. 505 – 510.
10. Tuan W. H., Chen R. Z., Wang T. C., et al. Mechanical properties of Al2O3/ZrO2 composites // J. Eur Ceram Soc. Elsevier, 2002. V. 22, No. 16. P. 2827 – 2833.
11. Olhero S. M., I. G. Paula, M. C. Torres, et al. Aqueous colloidal processing of ZTA composites // Journal of the American Ceramic Society. John Wiley & Sons, Ltd, 2009. V. 92, No. 1. P. 9 – 16.
12. Rao P. G., M. Iwasa. T. Tanaka, et al. Preparation and mechanical properties of Al2O3–15wt.% ZrO2 composites // Scr Mater. Pergamon, 2003. V. 48, No. 4. P. 437 – 441.
13. Матренин С. В., Ильин А. П., Толбанова Л. О., Золотарева Е. В. Активирование спекания оксидной керамики добавками нанодисперсных порошков // Известия Томского Политехнического Университета. 2010. Т. 317, № 3. P. 24 – 28.
14. Комоликов Ю. И., Кащеев И. Д., Земляной К. Г., Пудов В. И. Свойства керамики на основе Al2O3 с добавкой ультрадисперсного порошка Al2O3, синтезированного электрохимическим способом // Новые огнеупоры. 2019. Т. 7. P. 28 – 30.
15. Zhuravlev V. D., Bamburov V. G., Beketov A. R., et al. Solution combustion synthesis of ?-Al2O3 using urea // Ceram Int. Elsevier, 2013. V. 39, No. 2. P. 1379 – 1384.
16. Zhuravlev V. D., Vasil’ev V. G., Vladimirova E. V., et al. Glycine-nitrate combustion synthesis of finely dispersed alumina // Glass Physics and Chemistry. Springer, 2010. V. 36, No. 4. P. 506 – 512.
17. Carlos E., Martins R., Fortunato E., Branquinho R. Solution combustion synthesis: towards a sustainable approach for metal oxides // Chemistry – A European Journal. Wiley-VCH Verlag, 2020. V. 26, No. 42. P. 9099 – 9125.
18. Deganello F., Tyagi A. K. Solution combustion synthesis, energy and environment: Best parameters for better materials // Progress in Crystal Growth and Characterization of Materials. Elsevier Ltd, 2018. V. 64, No. 2. P. 23 – 61.
19. Varma A., Mukasyan A. S., Rogachev A. S., Manukyan K. V. Solution combustion synthesis of nanoscale materials // Chem Rev. American Chemical Society, 2016. V. 116, No. 23. P. 14493 – 14586.
The article can be purchased
electronic!
PDF format
700 руб
DOI: 10.14489/glc.2024.09.pp.043-051
Article type:
Research Article
Make a request