Composite materials based on K 25 hollow glass microspheres were obtained by modifying them with silver nanoparticles obtained by an environmentally friendly “green” method using an aqueous plant extract of Taraxacum root as a reducing agent, while simultaneously carrying out the process of synthesis of nanoparticles and their fixation on the surface and in the pores of the microspheres using ultrasonic exposure and subsequent heat treatment at 300…350 ?С. The developed composite materials based on K 25 hollow glass microspheres with silver nanoparticles deposited on their surface were studied using scanning electron microscopy, IR spectroscopy, and x-ray diffraction methods. Elemental analysis of the composites was obtained using energy-dispersive X-ray spectroscopy. The effectiveness of the method of applying silver nanoparticles to the surface of glass microspheres was shown.
Tatiana E. Nikiforova – Doctor of Chemical Sciences, leading researcher of the Laboratory of Technological Design of Catalytic and Adsorption Systems Based on Transition Metals for Hydrocarbon Processing and Solving Environmental Problems of Mineral Resources Complex Production, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
Nadezhda L. Pechnikova – researcher, Department of Chemistry and Technology of Macromolecular Compounds, Research Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
1. Zelder S., Rosin A., Helling D., et al. Mineral composite plaster containing hollow glass microspheres and CSA cement for building insulation // Appl. Sci. 2022. V. 12, No. 3. P. 1152. DOI: 10.3390/app12031152
2. Sousa-Vieira L., R?os S., Mart?n I. R., et al. Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window // Optical Materials. 2018. V. 83, No. 2. P. 207 – 211. DOI: 10.1016/j.optmat.2018.06.014
3. Walo-Mart?n D., Paz-Buclatin F., R?os S., et al. Temperature sensing with Nd3+ doped YAS laser microresonators // Appl. Sci. 2021. V. 11, No. 3. P. 1117. DOI: 10.3390/app11031117
4. Atroshchenko G. N., Sigaev V. N. Glassy microspheres and their applications in nuclear medicine // Glass and Ceramics. 2016. V. 72, No. 11–12. P. 397 – 404. DOI: 10.1007/s10717-016-9797-8
5. Deng B. Y., Li L. Z., Tan D., et al. Sustainable and cost-effective ultra-lightweight engineered cementitious composite: design and material characterization // Cem. Concr. Compos. 2023. V. 136. P. 104895. DOI: 10.1016/j.cemconcomp.2022.104895
6. Guo P., Meng W., Du J., et al. Lightweight ultra-high-performance concrete (UHPC) with expanded glass aggregate: development, characterization, and life-cycle assessment // Constr. Build. Mater. 2023. V. 371. P. 130441. DOI: 10.1016/j.conbuildmat.2023.130441
7. Yang J., Jeon D., Kang H., et al. Hydrophobic treatment on hollow glass microspheres for enhancing the flowability of lightweight high-performance cementitious composites // Constr. Build. Mater. 2023. V. 409. P. 133856. DOI: 10.1016/j.conbuildmat.2023.133856
8. Niu Y., Wang S., Zhu Z., et al. Hollow glass microspheres modified polyurethane sponge with enhanced flame retardancy // J. Appl. Polym. Sci. 2022. V. 139, No. 31. P. e52723. DOI: 10.1002/app.52723
9. Zhu Z., Niu Y., Wang S., et al. Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy // J. Colloid Interface Sci. 2022. V. 612. P. 35 – 42. DOI: 10.1016/j.jcis.2021.12.138
10. Hou J., Shi Y., Li Z., et al. Numerical simulation and experimental study on flexible buoyancy material of hollow glass microsphere and silicone rubber for small deep-sea soft robots // Appl. Mater. Today. 2020. V. 21. P. 100875. DOI: 10.1016/j.apmt.2020.100875
11. Kiran S., Gorar A. A. K., Wang T., et al. Effects of hollow glass microspheres on the polybenzoxazine thermosets: mechanical, thermal, heat insulation, and morphological properties // J. Appl. Polym. Sci. 2022. V. 139. P. 51643. DOI: 10.1002/app.51643
12. Han T.-L., Guo B.-F., Zhang G.-D., et al. Facile synthesis of hollow glass microsphere filled PDMS foam composites with exceptional lightweight, mechanical flexibility, and thermal insulating property // Molecules. 2023. V. 28, No. 6. P. 2614. DOI: 10.3390/molecules28062614
13. Afolabi O. A., Pandurangan M. T., Kanny K. Effect of hollow glass microsphere (HGM) on impact and flexural properties of high-density syntactic foam based epoxy composites // Materials Today: Proceedings. 2023. V. 87. Part 1. P. 246 – 251. DOI: 10.1016/j.matpr.2023.05.351
14. Wang Y., Chen S., Dang Z., et al. Research on effective thermal conductivity of hollow glass microspheres under vacuum at low temperature // Applied Thermal Engineering. 2024. V. 252. P. 123675. DOI: 10.1016/j.applthermaleng.2024.123675
15. Fan W., Li H., Wang Z., et al. Modified hollow glass microsphere in-situ reinforced polyurethane/ polydimethylsiloxane composite coating with self-cleaning and durable passive radiative cooling behaviors // Progress in Organic Coatings. 2024. V. 191. P. 108456. DOI: 10.1016/j.porgcoat.2024.108456
16. Xu X., Zhang L., Guo H., et al. Acoustic characterization of transmitted and received acoustic properties of air-coupled ultrasonic transducers based on matching layer of organosilicon hollow glass microsphere // Micromachines. 2023. V. 14, No. 11. P. 2021. DOI: 10.3390/mi14112021
17. Wang P., Zhong S., Yan K., et al. Effect of hollow glass microspheres surface modification on the compressive strength of syntactic foams // Journal of Materials Research and Technology. 2024. V. 30. P. 2264 – 2271. DOI: 10.1016/j.jmrt.2024.04.007
18. Ajayi A. A., Pandurangan M. T., Krishnan K. Development of epoxy-based sandwich composite panel with hollow glass microspheres/clay hybrid core and banana fiber facesheet for structural applications // Heliyon. 2024. V. 10, No. 9. P. e30428. DOI: 10.1016/j.heliyon.2024.e30428
19. Qiu R., Wang B., Shang J., et al. Modifying hollow glass microspheres to obtain self-floating separation adsorbents for adsorbing pollutants in wastewater: A review // Journal of Molecular Liquids. 2024. V. 404. P. 124965. DOI: 10.1016/j.molliq.2024.124965
20. Никифорова Т. Е., Козлов В. А., Вокурова Д. А. и др. Влияние модифицирования льняного волокна полиэтиленполиамином на сорбцию ионов Cu (II) Cd (II) // Рос. хим. ж. (Ж. Рос. хим. об-ва). 2023. Т. 67, № 3. С. 63 – 72. DOI: 10.6060/RCJ.2023673.9
21. Меретин Р. Н., Никифорова Т. Е. Исследование реакционной способности поверхности углеродсодержащего силикатного сорбента растительного происхождения // Изв. вузов. Сер. Химия и химическая технология. 2021. Т. 64, Вып. 11. С. 118 – 125.
22. Никифорова Т. Е., Козлов В. А., Вокурова Д. А. Сорбция ионов меди (II) в гетерофазной системе «водный раствор – модифицированная целлюлоза» // Изв. вузов. Сер. Химия и химическая технология. 2023. Т. 66, Вып. 12. С. 91 – 100. DOI: 10.6060/ivkkt.20236612.6814
23. Прокофьев В. Ю., Гордина Н. Е., Жидкова А. Б. Синтез гранулированных цеолитов со структурой NAА из каолина // Изв. высших учебных заведений. Сер. Химия и химическая технология. 2011. Т. 54, № 12. С. 77 – 80.
24. Прокофьев В. Ю., Гордина Н. Е. Исследование стадий термической обработки гидротермальной кристаллизации при получении гранулированного цеолита NAА из механоактивированного метакаолина // Журнал прикладной химии. 2013. Т. 86, № 3. С. 360 – 366.
25. Samad S. A., Arafat A. Lester E., et al. Upcycling glass waste into porous microspheres for wastewater treatment applications: efficacy of dye removal // Materials. 2022. V. 15, No. 17. Р. 5809. DOI: 10.3390/ma15175809
26. Runowski M., Mart?n I. R., Sigaev V. N., et al. Luminescent-plasmonic core-shell microspheres, doped with Nd3+ and modified with gold nanoparticles, exhibiting whispering gallery modes and SERS activity // Journal of Rare Earths. 2019. V. 37, No. 11. Р. 1152 – 1156. DOI: 10.1016/j.jre.2018.10.022
27. Mikharev E., Lunev A., Sidorov A., et al. Modeling and characterization of microspheres with silver molecular clusters for sensor applications // Eng. Proc. 2023. V. 58, No. 1. Р. 95. DOI: 10.3390/ecsa-10-16196
28. Huang Z., Chi B., Guan J., et al. Facile method to synthesize silver nanoparticles on the surface of hollow glass microspheres and their microwave shielding properties // RSC Adv. 2014. V. 4, No. 36. P. 18645 – 18651. DOI: 10.1039/C4RA01617C
29. Поленов Ю. В. Физико-химические основы нанотехнологий. Санкт-Петербург: Лань, 2019. 180 с. ISBN 978-5-8114-4113-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/
30. Козлова Е. С., Никифорова Т. Е. Внедрение наночастиц серебра в целлюлозную матрицу для получения упаковочных материалов для пищевых продуктов // ЖПХ. 2015. T. 88, Вып. 4. С. 607 – 615.
31. Nassar M. Y., Shaker F. A., El-Sayed G. O., et al. Synthesis and characterization of lemon leaf extract-mediated silver nanoparticles: an environmentally friendly approach with enhanced antibacterial efficacy // Journal of Molecular Structure. 2024. V. 1315. Р. 138753. DOI: 10.1016/j.molstruc.2024.138753
32. Бобкова Н. М. Физическая химия тугоплавких неметаллических и силикатных материалов: учебник. Минск: Высш. шк., 2007. 301 с. ISBN 978-985-06-1389-9
The article can be purchased
electronic!
PDF format
500
DOI: 10.14489/glc.2024.11.pp.025-033
Article type:
Research Article
Make a request