Ежемесячный научно-технический и производственный журнал

ISSN 0131-9582

  • Сквозной номер выпуска: 1144
  • Страницы статьи: 3-11
  • Поделиться:

Рубрика: Без рубрики

Высокотемпературным способом получены полые стеклянные микросферы из натриево-боросиликатного стекла состава, массовое содержание, %: 10 Na2O; 8 CaO; 0,3 MgO; 0,2 Al2O3; 9 B2O3; 0,5 SO3; 72 SiO2. Установлено, что максимальный выход микросфер до 87 % наблюдается при использовании пропановоздушного факела с характеристиками: соотношение воздух/пропан 1,3; максимальная температура на оси факела 1900 °С; угол раскрытия ~15°; расход транспортирующего газа 0,2 г/с. Полученные при данном режиме полые стеклянные микросферы характеризуются медианным диаметром 60 мкм, средней толщиной стенки 1,3 мкм, насыпной плотностью 260 кг/м3 и рассчитанной прочностью 50 МПа.
Валентин Валерьевич Шеховцов – канд. техн. наук, доцент кафедры «Прикладная механика и материаловедение», Томский государственный архитектурно-строительный университет (ТГАСУ), Томск, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..
Ольга Викторовна Казьмина – д-р техн. наук, профессор научно-исследовательского центра Н. М. Кижнера, Инженерной школы новых производственных технологий (ИШНПТ), Томск, Россия E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
Нелли Карповна Скрипникова – доктор технических наук, профессор кафедры «Прикладная механика и материаловедение», Томский государственный архитектурно-строительный университет (ТГАСУ), Томск, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
Кирилл Вячеславович Скридин – аспирант, Томский политехнический университет, научно-исследовательский центр Н. М. Кижнера, Инженерной школы новых производственных технологий (ИШНПТ), Томск, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
Роман Юрьевич Бакшанский – магистрант, Томский государственный архитектурно-строительный университет (ТГАСУ), Томск, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
Арина Викторовна Беляева – магистрант, Томский политехнический университет, научно-исследовательский центр Н. М. Кижнера, Инженерной школы новых производственных технологий (ИШНПТ), Томск, Россия. E-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
1. Karasu B., Demirel ?., ?ztuvan A., Burak ?. Glass microspheres // El-cezer? journal of science and engineering. 2019. V. 6, Nо. 3. P. 613 – 641.
2. Zhang Yl., Zang Cg., Jiao Qj., She-li Yf. Heat-insulating materials with high-temperature resistance through binding hollow glass microspheres with vinyl-functionalized polyborosiloxane // Journal of materials science. 2020. V. 55. P. 14264 – 14279.
3. Wu C., Wang W., Ji H. Preparation and properties of TiO2-coated hollow glass microspheres as thermal insulation materials for energy-saving buildings // Transactions of Tianjin university. 2020. V. 26. P. 283 – 291.
4. Gogoi R., Kumar N., Mireja S., et al. Effect of hollow glass microspheres on the morphology, rheology and crystallinity of short bamboo fiber-reinforced hybrid polypropylene composite // The Journal of the Minerals, Metals & Materials Society (TMS). 2019. V. 71. P. 548 – 558.
5. Awais H., Nawab Y., Anjang A., et al. Mechanical properties of continuous natural fibres (jute, hemp, flax) reinforced polypropylene composites modified with hollow glass microspheres // Fibers and Polymers. 2020. V. 21. P. 2076 – 2083.
6. Zheng J., Chen L., Wang P., et al. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage // Frontiers in Energy. 2020. V. 14. P. 570 – 577.
7. Vaz C. M. P., Porto L. F., D?Alkaine C. I., et al. Design and characterization of a pneumatic micro glass beads matrix sensor for soil water potential threshold control in irrigation management // Irrigation Science. 2022. V. 40. P. 397 – 405.
8. Атрощенко Г. Н., Савинков В. И., Палеари А. и др. Стеклообразные микросферы для ядерной меди-цины с повышенным содержанием оксида иттрия // Стекло и керамика. 2012. № 2. С. 3 – 7.[Atroshchenko G. N., Savinkov V. I., Paleari A., et al. Glassy microspheres with elevated yttrium oxide content for nuclear medicine // Glass Ceram. 2012. V. 69, No. 1–2. P. 39 – 43.]
9. Kurilova I., Bendet A., Fung E. K., et al. Radiation segmentectomy of hepatic metastases with Y-90 glass microspheres // Abdominal Radiology. 2021. V. 46. P. 3428 – 3436.
10. Ebbers S. C., van Roekel C., Braat M. N. G. J. A., et al. Dose–response relationship after yttrium-90-radioembolization with glass microspheres in patients with neuroendocrine tumor liver metastases // European Journal of Nuclear Medicine and Molecular Imaging. 2022. V. 49. P. 1700 – 1710.
11. Feng Y. C., Ma C. Y., Deng J. G., et al. A comprehensive review of ultralow-weight proppant technology // Petroleum Science. 2021. V. 18. P. 807 – 826.
12. Srivastava T., Katari N. K., Krishna M. S., et al. Studies on hollow glass microsphere reinforced silicone matrix composite for use in fast curing low density thermal insulation coating applications // Fibers and Polymers. 2022. V. 23. P. 175 – 183.
13. Бобкова Н. М., Трусова Е. Е., Савчин В. В. и др. Получение полых стеклянных микросфер и их применение в производстве водно-дисперсионных лакокрасочных материалов // Стекло и керамика. 2019. № 11. С. 3 – 7.[Bobkova N. M., Trusova E. E., Savchin V. V., et al. Obtaining hollow glass microspheres and their use in the production of water-dispersion coatings // Glass Ceram. 2020. V. 76, No. 11–12. P. 401 – 405.]
14. Nuzulia N. A., Islam T., Saputra A., et al. Developing highly porous glass microspheres via a single-stage flame spheroidisation process // Journal of Physics: Conference Series. 2022. V. 2243, No. 1.
15. Suzuki S., Sasaki K., Nakatsuka N., et al. A study of fine particle spheroidization process by elevated-pressure pure oxygen flame // ASME/JSME 2011. 8th Thermal Engineering Joint Conference. 2011.
16. Gupta D., Hossain K. M. Z., Ahmed I., et al. Flame-spheroidized phosphate-based glass particles with improved characteristics for applications in mesenchymal stem cell culture therapy and tissue engineering // ACS Applied Materials and Interfaces. 2018. V. 10, No. 31. P. 25972 – 25982.
17. Hossain K. M. Z., Patel U., Kennedy A. R., et al. Porous calcium phosphate glass microspheres for orthobiologic applications // Acta Biomaterialia. 2018. V. 72. P. 396 – 406.
18. Hongyun J., Liang X., Shuen H. Preparation of spherical silica powder by oxygen–acetylene flame spheroidization process // Journal of Materials Processing Technology. 2010. V. 210, No. 1. P. 81 – 84.
19. Poirier T., Labrador N., Gamarra M., et al. Smoothing iron oxide-based glass particles with an oxyacetylenic flame // High Temperature Material Processes. 2005. V. 2005, No. 4. P. 509 – 520.
20. Bortot M. B., Prastalo S., Prado M. Production and characterization of glass microspheres for hepatic cancer treatment // Procedia Materials Science. 2012. V. 1. P. 351 – 358.
21. Lee M. Y., Tan J., Heng J. Y. Y., Cheeseman C. A comparative study of production of glass microspheres by using thermal process // IOP Conference Series: Materi-als Science and Engineering. 2017. V. 205, No. 1.
22. Пат. 2319673 РФ, МПК 51 C03B 19/10. Устройство для изготовления стеклянных микрошариков и микросфер / А. Н. Трофимов, Т. Л. Басаргин, Н. Н. Трофимов и др. Заявитель и патентообладатель ОАО «Научно-производственное объединение «Стекло- пластик». Заявка № 2006124631/03; заявл. 11.07.2006; опубл. 20.03.2008, Бюл. № 8. 7 с.
23. Пат. 2059574 РФ, МПК 6 C 03 B 19/10. Способ получения полых стеклянных микросфер / В. В. Будов, А. В. Косяков, В. Г. Касыгин и др. Заявка № 5041215/33; заявл. 07.05.1992; опубл. 10.05.1996. 9 с.
24. Пат. 2278078 РФ, МПК 51 C 03 B 19/10. Устройство для изготовления стеклянных микрошариков / А. Н. Трофимов, Т. Л. Басаргин, Н. Н. Трофимов и др. Заявитель и патентообладатель ОАО «Научно-производственное объединение «Стекло-пластик». За-явка № 2005100637/03; заявл. 14.01.2005; опубл. 20.06.2006, Бюл. № 17. 7 с.
25. Бобкова Н. М., Савчин В. В., Трусова Е. Е., Павлюкевич Ю. Г. Реологические основы получения полых стеклянных микросфер на основе щелочно-боросиликатных систем // Стекло и керамика. 2018. № 1. С. 3 – 7.[Bobkova N. M., Savchin V. V., Trusova E. E., Pavlyukevich Yu. G. Rheological foundations for hollow glass microspheres production in alkali-borosilicate systems // Glass Сeram. 2020. V. 75, No. 1–2. P. 1 – 4.]
26. Елкина А. В., Парамонова А. М., Власова С. Г. Исследование физико-химических свойств боросиликатных стекол для изготовления стекловолокнистых материалов // Физика и химия стекла. 2018. Т. 44, № 3. С. 290 – 293.
27. Арбузов В. А., Арбузов Э. В., Дубнищев Ю. Н. и др. Восстановление методами гильберт-оптики поля температуры при горении предварительно перемешанных пропановоздушных смесей // Автометрия. 2020. Т. 56, № 1. С. 74 – 82.
28. Бажайкин А. Н., Баев В. К., Гуляев И. П. Измерение температуры пламени при горении встречных струй // Вестник Югорского государственного университета. 2015. № 2(37). С. 7 – 13.
29. Магунов А. Н., Пыльнев М. А., Лапшинов Б. А. Спектральная пирометрия объектов с неизвестной излучательной способностью в области температур 400 – 1200 К // Приборы и техника эксперимента. 2014. № 1. С. 128.

Статью можно приобрести
в электронном виде!

PDF формат

500

DOI: 10.14489/glc.2023.04.pp.003-011
Тип статьи: Научная статья
Оформить заявку

Ключевые слова

Для цитирования статьи

Шеховцов В. В., Казьмина О. В., Скрипникова Н. К., Скирдин К. В., Бакшанский Р. Ю., Беляева А. В. Свойства полых стеклянных микросфер, полученных в пропановоздушном факеле // Стекло и керамика. 2023. Т. 96, № 4. С. 03 – 11. DOI: 10.14489/glc.2023.04.pp.003-011